
Map over each combination of list elements simultaneously via futures
Source:R/future_xmap.R
future_xmap.Rd
These functions work exactly the same as xmap()
functions,
but allow you to run the map in parallel using future::future()
Usage
future_xmap(.l, .f, ..., .progress = FALSE, .options = furrr::furrr_options())
future_xmap_chr(
.l,
.f,
...,
.progress = FALSE,
.options = furrr::furrr_options()
)
future_xmap_dbl(
.l,
.f,
...,
.progress = FALSE,
.options = furrr::furrr_options()
)
future_xmap_dfc(
.l,
.f,
...,
.progress = FALSE,
.options = furrr::furrr_options()
)
future_xmap_dfr(
.l,
.f,
...,
.id = NULL,
.progress = FALSE,
.options = furrr::furrr_options()
)
future_xmap_int(
.l,
.f,
...,
.progress = FALSE,
.options = furrr::furrr_options()
)
future_xmap_lgl(
.l,
.f,
...,
.progress = FALSE,
.options = furrr::furrr_options()
)
future_xmap_raw(
.l,
.f,
...,
.progress = FALSE,
.options = furrr::furrr_options()
)
future_xwalk(.l, .f, ..., .progress = FALSE, .options = furrr::furrr_options())
Arguments
- .l
A list of vectors, such as a data frame. The length of .l determines the number of arguments that .f will be called with. List names will be used if present.
- .f
A function, formula, or vector (not necessarily atomic).
If a function, it is used as is.
If a formula, e.g.
~ .x + 2
, it is converted to a function. There are three ways to refer to the arguments:For a single argument function, use
.
For a two argument function, use
.x
and.y
For more arguments, use
..1
,..2
,..3
etc
This syntax allows you to create very compact anonymous functions.
If character vector, numeric vector, or list, it is converted to an extractor function. Character vectors index by name and numeric vectors index by position; use a list to index by position and name at different levels. If a component is not present, the value of
.default
will be returned.- ...
Additional arguments passed on to
.f
- .progress
A single logical. Should a progress bar be displayed? Only works with multisession, multicore, and multiprocess futures. Note that if a multicore/multisession future falls back to sequential, then a progress bar will not be displayed.
Warning: The
.progress
argument will be deprecated and removed in a future version of furrr in favor of using the more robust progressr package.- .options
The
future
specific options to use with the workers. This must be the result from a call tofurrr_options()
.- .id
Either a string or
NULL
. If a string, the output will contain a variable with that name, storing either the name (if.x
is named) or the index (if.x
is unnamed) of the input. IfNULL
, the default, no variable will be created.Only applies to
_dfr
variant.
Value
An atomic vector, list, or data frame, depending on the suffix. Atomic vectors and lists will be named if the first element of .l is named.
If all input is length 0, the output will be length 0. If any input is length 1, it will be recycled to the length of the longest.
See also
xmap()
to run functions without parallel processing.
future_xmap_vec()
to automatically determine output type.
future_xmap_mat()
and future_xmap_arr()
to return results in a matrix
or array.
furrr::future_map()
, furrr::future_map2()
, and furrr::future_pmap()
for other parallelized mapping functions.
Examples
future_xmap(list(1:5, 1:5), ~ .y * .x)
#> ! `future_xmap()` is not set up to run background processes.
#> • Try running `future::plan("multisession")`.
#> ℹ Check ?future::plan() (`?future::plan()`) for more details.
#> [[1]]
#> [1] 1
#>
#> [[2]]
#> [1] 2
#>
#> [[3]]
#> [1] 3
#>
#> [[4]]
#> [1] 4
#>
#> [[5]]
#> [1] 5
#>
#> [[6]]
#> [1] 2
#>
#> [[7]]
#> [1] 4
#>
#> [[8]]
#> [1] 6
#>
#> [[9]]
#> [1] 8
#>
#> [[10]]
#> [1] 10
#>
#> [[11]]
#> [1] 3
#>
#> [[12]]
#> [1] 6
#>
#> [[13]]
#> [1] 9
#>
#> [[14]]
#> [1] 12
#>
#> [[15]]
#> [1] 15
#>
#> [[16]]
#> [1] 4
#>
#> [[17]]
#> [1] 8
#>
#> [[18]]
#> [1] 12
#>
#> [[19]]
#> [1] 16
#>
#> [[20]]
#> [1] 20
#>
#> [[21]]
#> [1] 5
#>
#> [[22]]
#> [1] 10
#>
#> [[23]]
#> [1] 15
#>
#> [[24]]
#> [1] 20
#>
#> [[25]]
#> [1] 25
#>
future_xmap_dbl(list(1:5, 1:5), ~ .y * .x)
#> ! `future_xmap_dbl()` is not set up to run background processes.
#> • Try running `future::plan("multisession")`.
#> ℹ Check ?future::plan() (`?future::plan()`) for more details.
#> [1] 1 2 3 4 5 2 4 6 8 10 3 6 9 12 15 4 8 12 16 20 5 10 15 20 25
future_xmap_chr(list(1:5, 1:5), ~ paste(.y, "*", .x, "=", .y * .x))
#> ! `future_xmap_chr()` is not set up to run background processes.
#> • Try running `future::plan("multisession")`.
#> ℹ Check ?future::plan() (`?future::plan()`) for more details.
#> [1] "1 * 1 = 1" "1 * 2 = 2" "1 * 3 = 3" "1 * 4 = 4" "1 * 5 = 5"
#> [6] "2 * 1 = 2" "2 * 2 = 4" "2 * 3 = 6" "2 * 4 = 8" "2 * 5 = 10"
#> [11] "3 * 1 = 3" "3 * 2 = 6" "3 * 3 = 9" "3 * 4 = 12" "3 * 5 = 15"
#> [16] "4 * 1 = 4" "4 * 2 = 8" "4 * 3 = 12" "4 * 4 = 16" "4 * 5 = 20"
#> [21] "5 * 1 = 5" "5 * 2 = 10" "5 * 3 = 15" "5 * 4 = 20" "5 * 5 = 25"
apples_and_bananas <- list(
x = c("apples", "bananas"),
pattern = "a",
replacement = c("oo", "ee")
)
future_xmap_chr(apples_and_bananas, gsub)
#> ! `future_xmap_chr()` is not set up to run background processes.
#> • Try running `future::plan("multisession")`.
#> ℹ Check ?future::plan() (`?future::plan()`) for more details.
#> [1] "oopples" "boonoonoos" "eepples" "beeneenees"
formulas <- list(mpg ~ wt, mpg ~ hp)
subsets <- split(mtcars, mtcars$cyl)
future_xmap(list(subsets, formulas), ~ lm(.y, data = .x))
#> ! `future_xmap()` is not set up to run background processes.
#> • Try running `future::plan("multisession")`.
#> ℹ Check ?future::plan() (`?future::plan()`) for more details.
#> $`4`
#>
#> Call:
#> lm(formula = .y, data = .x)
#>
#> Coefficients:
#> (Intercept) wt
#> 39.571 -5.647
#>
#>
#> $`6`
#>
#> Call:
#> lm(formula = .y, data = .x)
#>
#> Coefficients:
#> (Intercept) wt
#> 28.41 -2.78
#>
#>
#> $`8`
#>
#> Call:
#> lm(formula = .y, data = .x)
#>
#> Coefficients:
#> (Intercept) wt
#> 23.868 -2.192
#>
#>
#> $`4`
#>
#> Call:
#> lm(formula = .y, data = .x)
#>
#> Coefficients:
#> (Intercept) hp
#> 35.9830 -0.1128
#>
#>
#> $`6`
#>
#> Call:
#> lm(formula = .y, data = .x)
#>
#> Coefficients:
#> (Intercept) hp
#> 20.673851 -0.007613
#>
#>
#> $`8`
#>
#> Call:
#> lm(formula = .y, data = .x)
#>
#> Coefficients:
#> (Intercept) hp
#> 18.08007 -0.01424
#>
#>